Bifurcation and periodic points in the $l_{1}$-norm minimization problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multiview Registration of 3D Surfaces via L_1-norm Minimization

In this paper we present a robust method for simultaneous registration of multiple 3D scans. Rigid registration is an important task in many applications such as surface reconstruction, navigation and computer aided design. The goal of 3-D (rigid) registration is to align surfaces through a (rigid) transformation. A large number of existing registration algorithms are dependent on finding match...

متن کامل

Density of the Periodic Points in the Interval Set

The dynamical system (f,R) is introduced and some of its properties are investigated. It is proven that there is an invariant set Λ on which the periodic points of f are dense.

متن کامل

A Compact Formulation for the L21 Mixed-norm Minimization Problem

We present an equivalent, compact reformulation of the `2,1 mixednorm minimization problem for joint sparse signal reconstruction from multiple measurement vectors (MMVs). The reformulation builds upon a compact parameterization, which models the rownorms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse...

متن کامل

Solving the Graph Cut Problem via l1 Norm Minimization

Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization. This l1 norm minimization can then be tackled by solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed pro...

متن کامل

Degenerate Bifurcation Points of Periodic Solutions of Autonomous Hamiltonian Systems

We study connected branches of non-constant 2π-periodic solutions of the Hamilton equation ẋ(t) = λJ∇H(x(t)), where λ ∈ (0,+∞), H ∈ C(R ×Rn,R) and ∇H(x0) = [ A 0 0 B ] for x0 ∈ ∇H−1(0). The Hessian ∇H(x0) can be singular. We formulate sufficient conditions for the existence of such branches bifurcating from given (x0, λ0). As a consequence we prove theorems concerning the existence of connected...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANZIAM Journal

سال: 2007

ISSN: 1445-8810

DOI: 10.21914/anziamj.v47i0.1076